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1Laboratory of Urban and Environmental Systems, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2Institute for Applied Mathematics Mauro Picone (IAC) CNR, Rome, Italy

3Institute for Cross-Disciplinary Physics and Complex Systems (IFISC), CSIC-UIB, Palma de Mallorca, Spain
4Centro Studi e Ricerche ”Enrico Fermi” (CREF), Rome, Italy∗

5Estación Biológica de Doñana (CSIC), Seville, Spain
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Ecological models traditionally explain stability and coexistence through pairwise interactions among species.

These interactions can also involve groups of three or more species—higher-order interactions—which recent

theory suggests can by themselves stabilize communities. However, ecological communities exhibit both pair-

wise and higher-order interactions, and how their interplay governs stability and coexistence remains unknown.

This work addresses this gap by analyzing a model of competitive communities that incorporates a proportion of

pairwise and higher-order interactions. Using empirical data, numerical simulations, and analytical methods, we

show that higher-order interactions alone cannot guarantee coexistence. We find that, while a small fraction of

higher-order interactions can stabilize dynamics in communities of identical species, this effect disappears under

more realistic conditions—such as heterogeneity in birth and death rates, empirically derived rates, or explicit

interaction structures. Our results challenge the prevailing view of higher-order interactions as a universal sta-

bilizing mechanism, providing quantitative evidence of the joint importance of both pairwise and higher-order

interactions, together with network structure and species parameters, for understanding ecological stability.

INTRODUCTION

The question of how different species coexist has captivated

researchers beyond ecology, including disciplines like statis-

tical physics and mathematics. The challenge mainly arises

from the competitive exclusion principle, which asserts that

inferior competitor species should eventually be driven to ex-

tinction by better-adapted counterparts. Among other coexis-

tence mechanisms, intransitive competition has garnered at-

tention as a potential bypass of exclusion [1]. Intransitive

competition establishes no hierarchy among species, such as

in a “rock-paper-scissors” tournament, where species i out-

competes species j, j outcompetes species k, and in turn, k
outcompetes i. In intransitive communities, coexistence is

reached because species abundances tend to cycle, prevent-

ing one species from taking over the whole population. From

the theoretical side, models implementing intransitive domi-

nance result in abundances neutrally cycling around an equi-

librium point [2]; or asymptotic solutions in which the system

cycles from being composed almost entirely of one species

to almost wholly by another and so for [3], something that is

unlikely to occur in nature. In addition, the presence of large

oscillations may turn against coexistence since species could

become extinct by external perturbations or stochastic events.

Moreover, the number of systems that rely completely on in-

transitive competition as the main mechanism for promoting

coexistence is still scarce [1, 4]. Some classic examples of

intransitivity in natural systems are the side-blotched lizards

[5], and E. coli [6], where three strains regulate a toxin’s resis-

tance, sensitivity, and production. More recent works include

the study of sessile organisms like trees [7] and fungi [8].
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Recent theoretical studies aim to (1) overcome the large

oscillations by finding conditions for stable coexistence [9]

(stability sensu May [10]) and (2) explain when intransitiv-

ity could be found in nature as a coexistence mechanism

[7, 11]. Their approach is to combine intransitivity with aux-

iliary mechanisms, such as mobility [12], local and structured

interactions [13], or higher-order interactions [9]. Structured

interactions explicitly consider space, which has an important

impact on coexistence [14–16]. The spatial arrangement of

individuals can significantly affect the magnitude of their mu-

tual influences, and hence the resulting dynamics [17]. In the

case of intransitive competitive interactions, the system stabi-

lizes when the individuals of competing species are embedded

in space and can only interact with other individuals within a

short distance [13]. On the contrary, large oscillations emerge

when these interactions are neither spatially structured nor lo-

cal.

Stable coexistence has also been achieved in mathemati-

cal models where the interactions are higher-order under cer-

tain conditions [2]. Higher-order interactions (HOIs) emerge

when the presence of a third species influences the interac-

tion between two other species. They attracted much atten-

tion in ecological research several decades ago, in part be-

cause their nonlinearity promised greater realism than the

classic Lotka–Volterra equations [18, 19]. After their popu-

larity waned amid debates over their definition [20, 21] and

detection [22, 23], HOIs are enjoying a revival [24, 25], even

if previous quarrels remain [26, 27]. New theoretical models

now aim to clarify whether and how HOIs influence the coex-

istence and stability of ecological communities [28]. In par-

ticular, for intransitive competition, a model with only HOIs

stabilizes the dynamics for species with equal or very similar

physiological rates [9].

However, competition models have predominantly focused

on either pairwise interactions or HOIs separately, within ei-
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ther structured or unstructured communities. In reality, those

approaches—pairwise or higher-order interactions in isola-

tion, and equivalent species in terms of physiological rates—

are too far from natural scenarios. As one would expect to

encounter a combination of various types of interactions in en-

vironments that vary in complexity [29, 30], the logical next

step would be to explore the stability conditions with both or-

ders of interactions simultaneously.

Here, we go one step further in complexity by investigating

whether stable coexistence can be achieved in communities

with a combination of both pairwise and higher-order interac-

tions, even when these are unstructured, with empirical physi-

ological rates. On the one hand, we test the influence of HOIs

by varying their proportion in situations where pairwise com-

petition alone cannot stabilize the system. Then, we explore

how heterogeneity in physiological rates and the structure of

competitive interactions change the dynamics. We use a com-

pilation of empirical birth and mortality rates of more than

500 plant species to do so (Methods). We find that stable co-

existence is reached with a small critical proportion of HOIs,

which strongly increases with the species differences in phys-

iological rates. A critical proportion of HOIs is also needed

for stability when considering interaction networks. In that

case, the coexistence can be explained by the distribution of

hyperlinks formed by an increasing proportion of HOIs.

We explore the consequences of combining interaction or-

ders with analytical derivations, numerical integration, and

Monte Carlo simulations of empirical data. As a starting

point, we study a competition model with both pairwise and

higher-order interactions involving three species. We then al-

low species to differentiate not only on their competition skills

but also on their physiological rates. Finally, we abandon the

well-mixed scenario and define an interaction network, whose

nodes are single individuals of different species (Methods).

They are connected by links and hyperlinks, representing pair-

wise and higher-order interactions [31]. Both orders of links

are randomly drawn, mimicking unstructured interactions, to

test the impact of HOIs without the stabilizing effect of pair-

wise structured interactions [13]. Our results present a set of

conditions in the structure and order of interactions, and on

physiological rates that natural communities need to fulfill to

have stable coexistence under intransitive competition.

RESULTS

We consider an isolated competitive g-species community

and model the effect of combining pairwise and higher-order

interactions in two scenarios, growing in complexity. Firstly,

the coexistence and stability of our community are studied

with the machinery developed for non-linear dynamical sys-

tems. In particular, this means we take a well-mixed approach

and describe the evolution of species densities with ODEs.

Secondly, we place the individuals in a network, whose links

determine who competes with whom and the nature of the in-

teraction, pairwise or higher-order.

Competitive community model with higher-order interactions

To focus on the interplay between pairwise and higher-

order interactions (HOIs), we keep the number of processes

to a minimum. Each species i has two physiological rates,

specifically birth fi and mortality di rates, and competes with

the other species. The evolution of species density xi can be

described by replicator dynamics, in the pairwise case, as in

[9]:

dxi

dt
=

g
∑

j=1

(Wij −Wji)

= xi





D(x)

F (x)2
fi
∑

j

2Hijfjxj − di



 ,

(1)

where Wij is the rate at which individuals of species i replace

individuals of species j by means of direct pairwise competi-

tion. The equations can be expressed in terms of physiological

rates and the dominance matrix H , which encodes competi-

tive interactions. In particular, Hij is the probability species i
outcompetes species j, so that Hii = 0.5 and Hij +Hji = 1.

Introducing a probabilistic dominance matrix in this and the

subsequent equations allows us to go beyond neutral competi-

tion (Hij = 0.5 ∀i, j) and complete (Hij = 1, Hj,i = 0 ∀i, j)
dominance between species [9]. The developing probability

of offspring of species i is fixi/F (x), given that F (x) =
∑

i fixi, and dixi/D(x) is the dying probability of an indi-

vidual belonging to species i, where D(x) =
∑

i dixi. Vary-

ing these physiological rates also allows us to break neutrality

in the classic sense of species with equal probabilities of re-

production and death [32].

Conversely, one could also express the dynamics of a sys-

tem of only higher-order interactions. If we limit ourselves to

triplewise interactions, i.e. involving 3 competitors, the equa-

tions are

dxi

dt
= xi

(

D(x)

F (x)3
fi
∑

j,k

Bijkfjxjfkxk − di

)

, (2)

in which B is a tensor (in the sense of a multidimensional ar-

ray) whose elements Bijk represent the probability of species

i simultaneously winning both species j and k, and hence

Bijk = Bikj .

Since one would expect the presence of both pairwise and

higher-order interactions in a natural community [29], we set

a parameter α to define the proportion or intensity of HOIs.

The equations of such a system become

dxi

dt
= (1− α)



xi





D(x)

F (x)2
fi
∑

j

2Hijfjxj − di









+ α



xi

(

D(x)

F (x)3
fi
∑

j,k

Bijkfjxjfkxk − di

)



 .

(3)

If α = 0, we recover the pairwise scenario. By increasing α,

we can intensify the importance of higher-order interactions

in density evolution.
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FIG. 1. Illustration of the competitive dynamics. When a random plant dies, it leaves a vacant fertile region. The neighbors connected

to the empty node by one of its links compete to establish offspring there. Depending on the nature of the link, competition is pairwise or

higher-order, and the winner plant is chosen according to the probabilities of the species dominance matrix H , or tensor B, respectively.

The dynamical behavior of pairwise and higher-order inter-

actions considered separately (Eqs(1) and (2)) is very differ-

ent. Previous results show that the system neutrally oscillates

in the pairwise case if the dominance matrix has intransitive

cycles (Hij > Hjk > Hki > 0.5)[6, 33]. Instead, HOIs

(Eq (2)) stabilise the community –in the sense that it con-

verges to a stable fixed point– when they also form intransitive

cycles so that Bijk = 2HijHik +HijHjk +HikHkj encodes

all possible pairwise combinations and when the physiologi-

cal rates are equal or very similar [9]. For the complete case

of Eq. (3), we varied α to quantify how introducing HOIs in-

fluences species coexistence and stability.

Building upon the illustration of sessile organisms –e.g.

flowering plants competing for space– with every iteration of

our model, a plant dies, creating an opening. One link to the

new vacant region is selected at random, and the plants that

belong to that link compete to disperse their seedling there

(Fig. 1). Depending on the link order, the winner is deter-

mined either by the g × g dominance matrix H for pairwise

interactions or by the g × g × g dominance tensor B in the

case of HOIs (Methods).

Once presented our model, we explore our research ques-

tions by first analyzing the temporal evolution of species’ den-

sities in the situation of three competing species, g = 3. With-

out loss of generality, we use the dominance matrix as defined

in [13]

H =





0.5 0.34 0.76
0.66 0.5 0.25
0.24 0.75 0.5



 , (4)

defining Bijk = 2HijHik +HijHjk +HikHkj and track the

proportion of individuals of each species in the system, xi(t),
where

∑

xi(t) = 1 at every t. To characterize the behavior

during Monte Carlo simulations, we do not consider directly

the amplitude of the oscillations in xi since they could be mis-

leading due to the stochastic nature of the simulations. In-

stead, we take advantage of the fact that species densities can

be interpreted as a point tracing a trajectory within a g−1 sim-

plex covering the space of possible ecological states, where

each vertex corresponds to a single-species population. As

time evolves, the area encircled by the densities’ trajectories

on the simplex characterizes the macroscopic state of the sys-

tem [13]. We then remove the most outlier points encircled in

the simplex associated with stochasticity. The trajectory oc-

cupies a small area when the system fluctuates with low am-

plitude around a certain point. In contrast, larger oscillations

cover a wider area in the simplex.

For well-mixed systems with equal physiological rates, any

proportion of HOIs is sufficient for stability

We begin our analysis on how the proportion of higher-

order interactions α influences species coexistence and sta-

bility by studying the particular case of equal physiological

rates (di = fi = 1 ∀i), for which Eq. (3) becomes

dxi

dt
= (1− α)

(

− xi + 2
∑

j

Hijxixj

)

+α

(

− xi +
∑

j,k

Bijkxixjxk

)

.

(5)

The equilibrium of Eq. (1) (2
∑

j Hijx
∗
j = 1) is also an

equilibrium of the previous equation and can be used to deter-

mine whether the system stands up to disturbances and coex-

ist. To do so, we use the Lyapunov function V (x) as defined

in [9],

V (x) = −
∑

i

x∗

i log
xi

x∗
i

, (6)
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FIG. 2. Any proportion of higher-order interactions stabilizes the dynamics in well-mixed competitive systems with equal physiological

rates. Numerical integration of the dynamics from the set of ODEs, Eq. (5), for (a) α = 0 (no HOIs) and (b) α = 0.1. (c) Eigenvalues for

different proportions of HOIs (dots color) at the fixed point. For α > 0, the pair of complex conjugate eigenvalues cross into the left half-plane,

guaranteeing that the fixed point is stable. (d) Average area on the simplex of our 3-species system as a function of different values of α. The

areas are calculated over 50 Monte Carlo simulations. Shades indicate the standard deviation. The inset is the probability of coexistence pcoex
over 100 simulations since the noisy nature of the simulations may lead to extinctions when the oscillations are wide enough. To measure the

area in the simplex, we only consider the dynamics of those systems in which all species coexist.

since fortunately, it is still a Lyapunov function for Eq. (3).

Deriving Eq. (6) and assuming the feasibility of the equilib-

rium (x∗
i > 0, ∀i [34]), we obtain

dV

dt
=
∑

i

∂V

∂xi

dxi

dt
= −

∑

i

x∗
i

xi

dxi

dt

= α






−2
∑

i

x∗

i





∑

j

Hijξj





2





,

(7)

where we have introduced ξj := xj − x∗
j . For α = 0, we re-

cover the case of only pairwise interactions, where dV/dt = 0
meaning the system follows neutral cycles around the equilib-

rium (Fig. 2a) [9]. When α > 0, we always get dV/dt ≤ 0,

which implies x⃗∗ is a globally stable fixed point (Fig. 2b).

Thus, there is a transition between these two regimes at

αc = 0, where neutral-cycle oscillations give way to a sta-

ble fixed point. The eigenvalues of the Jacobian matrix at the

equilibrium characterize this transition as a Hopf Bifurcation

(Fig. 2c).

To corroborate these analytical predictions, we run Monte

Carlo simulations of our system with well-mixed population

of g = 3 species and random initial conditions. During the

simulations, extinctions can easily occur for α = 0 due to

stochastic fluctuations (see inset in Fig. 2d). When α > 0,

the system stabilizes around the predicted equilibrium, which

agrees with our theoretical derivations. In the simulations,

the transition between these two regimes occurs smoothly as

α increases. Nevertheless, the area covered by the trajectory

decreases, and by α = 0.1, the system could be considered

to have reached a fixed point (Fig. 2d). Hence, we do not

need to lose pairwise interactions altogether to stabilize the

dynamics: a small proportion of higher-order interactions is

enough to obtain the same effect.

Stability depends on the variability of physiological rates

So far we have only considered species with equal birth and

mortality rates, and thus they only differ in their competitive

abilities (encoded in H). To further explore the consequences

of adding HOIs, we go beyond this assumption by studying

the more realistic scenario of Eq. (3) with different physiolog-

ical rates. Now, the equilibrium varies with the proportion of
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FIG. 3. As the difference between physiological rates increases, a greater proportion of higher-order interactions is needed to stabilize

the dynamics. Numerical integration of Eq. (3) with normally-sampled physiological rates. (a) Critical higher-order interactions proportion

αc as a function of variance σ2, averaged over 104 simulations with the same dominance matrix H . (b) Probability of the existence of a

transition towards a fixed point pcoex as a function of variance σ2 over 104 simulations. The shaded regions indicate the area where species

always coexisted in our simulations.

0

0.5

1
(a)

0

0.5

1

C
rit

ic
al

 p
ro

po
rt

io
n 

of
 H

O
Is

 
c

10-5 100
0

0.5

1

10-5 100

0

0.2

0.4

0.6

0.8

1
T

ra
ns

iti
on

 p
ro

ba
bi

lit
y 

p
co

ex

(b)

Normal
Trees
Land Herbs
Seagrasses

Variance of ratios of physiological rates 2(c
i
)

FIG. 4. Critical proportion of HOIs for physiological rates for different plant species. (a) Numerical integration of Eq. (3) with empirical

physiological rates extracted from [35] for different categories of plants, showing the critical higher-order interactions proportion αc as a

function of the variance of the proportionality among physiological rates σ2(ci) for 15000 triples of different species with the same dominance

matrix H . (b) Probability of the existence of a transition towards a fixed point pcoex. For comparison, the probability for the case of normally

distributed physiological rates is also plotted, but note that the x-axis differs from that of Fig. 3.

HOIs in the system, α. If we define

T1(x⃗) :=
D

F 2

∑

j

2fifjHijxj and

T2(x⃗) :=
D

F 3
fi
∑

j

∑

k

2fjfk(HijHjk +HijHik)xjxk,

(8)

(where we have dropped the arguments of D(x) and F (x) for

readability) then, the equilibrium must fulfill the expression

T ∗

1
(1− α) = di − αT ∗

2
, (9)

where and T ∗ := T (x⃗∗). Assuming that x⃗∗ exists and is fea-

sible, we can define another Lyapunov function V (x) as:

dV

dt
= −

∑

i

x∗
i

xi

ẋ (10)
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and, substituting the equilibrium condition, we have:

dV

dt
=

1

F 2D∗
(F ∗D − FD∗)

2

+ α

[

2D
F ∗

F
−
∑

i

x∗

i T2 −
F ∗2

F 2

D

D∗

∑

i

xiT
∗

2

]

(11)

(see Methods section for the full calculation). If the dynam-

ics eventually stabilizes, this derivative must be zero at some

point. After some calculations, we find that this transition

takes place at

αc =
− 1

F 2D∗
(F ∗D − FD∗)

2

2DF∗

F
−
∑

i x
∗
i T2 −

F∗2

F 2

D
D∗

∑

i xiT ∗
2

. (12)

We can observe that the dividend part is zero when mortal-

ity rates are proportional to birth rates by a constant value for

all species, i.e. fi = cdi ∀i. The dividend is always nega-

tive otherwise. The divisor can be either positive or negative,

depending on the specific values of the physiological rates.

Thus, the transition to stability will no longer be at αc = 0. In

general, we need to have a non-negligible proportion of HOIs

to stabilize the community.

To gain further insights on the behavior of Eq. (12), we de-

cide to study its behavior when physiological rates become

increasing different. To do so, we sample birth and death

rates from two normal distributions, namely N (µb, σ
2

b ) and

N (µd, σ
2

d). This way we can study how the heterogeneity of

fi and di affects αc. Inspecting the numerator in Eq. (12), we

see that the expected value of αc will depend on the differ-

ence of the means of each distribution. When µb = µd = 1,

αc is predicted to be zero, but it can deviate significantly due

to finite sample size for large variances—a proxy of hetero-

geneity. We explore this situation by simulating communities

with increasing values of α for species whose physiological

rates are drawn from normal distributions with µb = µd = 1
and varying σ2

b = σ2

d ≡ σ2. We then record the value of αc at

which the transition occurs.

Fig. 3a shows that as the variance of physiological rates be-

comes larger, αc increases too, and reaches values close to

0.5 on average. In addition, the proportion of HOIs needed to

stabilize the dynamics becomes increasingly variable as dif-

ferences in physiological rates do, hindering the prediction of

the stability of communities comprising species with different

rates. Interestingly, another consequence of this result is that

there are situations where there is no transition for any value

of α—i.e., no fraction of HOIs would be enough to stabilize

the dynamics. That occurs above a critical value for the vari-

ance (outside of the grey shaded region in Figures 3a and 3b),

where the probability of finding a value of α that stabilizes

the dynamics pcoex decreases abruptly (Fig. 3b). Hence, coex-

istence is unlikely when birth and death rates are too different

within and between species.

Empirical physiological rates

So far, the physiological rates we considered were based on

synthetic data. However, a natural question arises: what will

happen in a more realistic setting where physiological rates

are based on empirical values found in real-world commu-

nities? To answer this question, we now sample the physi-

ological rates from data from an empirical study investigat-

ing allometric scaling in plants [35]. Being more specific, we

consider data from three different plant types: Trees, Land

and salt marsh herbs and seagrasses accounting respectively

for 230, 190 and 151 species yielding birth and death rates,

which span 6 orders of magnitude. For each type, we sam-

ple g = 3 different species at time with their respective birth

fi and death di rates. We then use Eq. 12 to find the criti-

cal value of α at which the transition to stability takes place,

if present. Finally, in order to quantify the heterogeneity be-

tween the rates, we calculate the variance σ2(ci) of their ratio

(ci = fi/di) among the sampled species.

Our findings show that, as for the case of synthetic rates,

when the variance of the ratios of physiological rates becomes

larger σ2(ci), αc increases too (Fig. 4a). In addition, the pro-

portion of HOIs needed to stabilize the dynamics also be-

comes increasingly variable, hindering the prediction of the

stability of communities. Regarding the probability of tran-

sition towards stable coexistence pcoex, we observe that it de-

cays for empirical values even earlier than for synthetic rates

(Fig. 4b).

Interaction networks

So far, we focused our analysis on the case of well-mixed

populations. However, assuming that each individual interacts

with the entire population could be unfeasible in most sce-

narios. To overcome this limitation, in this section we study

our competitive community model on random networks with

HOIs.

To do that, we are forced to abandon the analytical descrip-

tion of Eq. 3 and rely on mechanistic simulations on random

Erdös-Rényi (ER) graphs with a fixed density and an increas-

ing fraction of HOIs, α. In particular, we create ER networks

with a fixed average forgetful degree ⟨k̃⟩ = 20 – i.e. the sum

of a node’s connections weighted by their order– with increas-

ing values of α. With α = 0 the network is only composed

of pairwise links while larger values of α mean that pairwise

connections are replaced by higher-order ones retaining ⟨k̃⟩
constant (see the Methods section for details). Moreover, with

the aim of testing if HOIs are a plausible mechanism for com-

munities stability, we impose again the simple setting of iden-

tical physiological rates.

Fig. 5a shows system’s stability against the proportion of

HOIs. What is surprising is that for α < 0.2 HOIs are not ca-

pable of stabilizing the dynamics, when for well-mixed pop-

ulations we have αc = 0. For α ≃ 0.2 instead, a sharp

transition occurs with the system immediately reaching sta-

bility. The same happens for probability of coexistence (inset

of Fig. 5a), reaching one as α approaches 0.2.

To understand the mechanisms behind this transition, we

look at how the introduction of HOIs changes the large-scale

organization of the network. Specifically, we look at how a gi-

ant component of composed only of hyperlinks GC△ appears
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FIG. 5. HOIs stabilize the dynamics of an unstructured system.

(a) Monte Carlo simulations on Erdős-Rényi (ER) hypergraphs show

that the average area of the 3-species system decreases as a function

of α. Shades indicate the standard deviation over 50 simulations with

N = 5 · 104 and average forgetful degree ⟨k̃⟩ = 20. The inset is the

probability of coexistence pcoex over 50 simulations. (b) The size

of the normalized giant component of hyperlinks (GC△) increases

with α in the same fashion as the area in the simplex decreases in the

above figure. The dependence of the proportion of HOIs on GC△

tells us that the area is minimal when GC△ fills the whole network,

as can be seen in the inset together with their Pearson correlation

coefficient ρ.

as α increases. Interestingly, GC△ shows the same transition

for α ≃ 0.2 observed for the area of the simplex occupied by

the system trajectory, reaching one around α ≃ 0.3. At the

same time, the inset of Fig. 5b shows that the area decreases

as GC△ percolates, and reaches its minimum when the GC△

encompasses the whole network. Therefore, the system stabi-

lizes when a giant component composed solely of hyperlinks

appears –i.e. each node of the network is reached by, at least,

one higher-order link.

Finally, these results reveal two complementary insights.

First, in the more realistic scenario of interaction networks,

stable coexistence can be achieved only when a quite large

proportion of HOIs are present. Second, to be effective HOIs

need a very specific structural arrangement involving a very

large fraction of, if not all, the individuals in the community.

These findings suggest that HOIs alone cannot be responsi-

ble for the coexistence in real communities. Our results also

suggest that models focusing solely on one mechanism may

miss crucial dynamics that can promote stability through the

interplay of more complex interaction patterns.

DISCUSSION

Understanding the mechanisms that enable species coexis-

tence within ecological communities is critical for biodiver-

sity maintenance, ecosystem functioning, and conservation.

Recent theoretical models suggest that HOIs create condi-

tions for coexistence. This work was motivated by the need

to clarify this claimed potential of higher-order interactions as

stabilizing factors. Here, we demonstrate that the theoretical

power of HOIs as a stabilizing mechanism weakens when pa-

rameters and models assumptions are constrained more real-

istically. Till now, theoretical results supporting these claims

considered communities composed only by HOIs [9] or inter-

actions drawn at random [36, 37]. Our results demonstrate

that these results do not hold once you introduce more real-

istic interaction structures. For instance, if HOIs cluster in

specific trophic motifs or their signs correlate with pairwise

effects [28], or if species differ in their physiological rates as

we modeled, the supposed stabilizing influence of HOIs van-

ishes. In other words, the stability in those models may be an

artifact of simplifying assumptions.

In particular, we focus on the role of higher-order interac-

tions in intransitive competitive communities. We have ana-

lyzed different proportions of pairwise and HOIs, and differ-

ent values of physiological rates, ranging from equivalent to

distinct species. Our results show that a critical proportion of

HOIs can explain stability when the competitive community

cannot be stable by pairwise interactions alone. However, this

proportion αc depends on the similarity of physiological rates

among the species. When physiological rates become more

dissimilar, the transition disappears.

We believe that our results redefine the stabilizing effect of

HOIs. In fact, in most cases their effect is lost or demands

additional conditions when we incorporate more ecological

complexity, such as variation in physiological rates. In reality,

species do differ in their birth and mortality rates, and this

heterogeneity plays a significant role in community dynamics.

This dependence on heterogeneity was something that models

based on random interactions could not foresee. In such cases,

HOIs guarantee coexistence, but only if pairwise interactions

are weak or facilitative [25].

We also study the role of HOIs in a case where interactions

take place on a network. By taking space into account explic-

itly, our findings reveal that stable coexistence can be reached

only when HOIs span the entire network –i.e. a giant com-

ponent of hyperlinks emerges. This result also suggests that

models focusing solely on one mechanism may miss crucial

dynamics that can promote stability through the interplay of

more complex interaction patterns.

However, our study also has several limitations. First of all,

our model is far from being realistic; missing several details

of real ecological communities. However, the fact that HOIs

not always stabilize the dynamics even in this simplified set-
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ting suggests that their effect would be also negligible in more

complex model. To isolate the effect of physiological rate het-

erogeneity, we used synthetic dominance matrices H as real

interaction data are practically impossible to estimate. We

also assumed that each sampled triplet could potentially coex-

ist in nature, something at least unlikely. Although our species

come from different geographic regions and may not naturally

interact, we limited the simulations to plants within the same

functional category. However, the trends observed in αc sug-

gest that physiological heterogeneity would likely yield sim-

ilar results among spatially co-occurring species. Finally, we

constructed the higher-order dominance tensor B by aggregat-

ing the pairwise outcomes in H (following [9]). However, this

tournament-based method can overlook genuine three-species

(or higher) effects that are not reducible to pairwise combina-

tions. In principle, one could replace this tournament-derived

method with a direct parametrization of higher-order effects

without losing analytical traceability. However, obtaining em-

pirical estimates for these modified interactions is currently

challenging.

Along this line and building on the need for empirical stud-

ies of higher-order effects, [38] offers a compelling case that

combines HOIs with network structure to predict species per-

sistence. In their multitrophic experiments, they show that in-

corporating HOIs in the model description alters the strength

and even reverses the sign of per-capita interactions among

plants, leading to substantially different predictions of coexis-

tence than non-HOIs models (in agreement with [39, 40]). In-

cidentally, these works also support that HOIs in a well-mixed

model alone are insufficient: only when embedded within

the pairwise interactions and spatial experiments do mod-

els achieve reliable predictions of each species’ persistence

probability. They thus emphasize our message that higher-

order coefficients must go hand in hand with other coexistence

mechanisms to faithfully predict coexistence.

In the spirit of these empirical works and limitations, our

results thus suggest two next steps: first, quantifying how the

values of the higher-order dominance tensor B are distributed

in natural communities [27, 41] (whose theoretical predictions

are suggested [28]), and second, testing whether HOIs spa-

tially arrange according to the patterns found in our results.

While adding realism decreases the stabilizing effect, this

does not allow us to categorically dismiss the importance of

HOIs. Despite the potential of combining mechanisms to pro-

mote coexistence, we still lack the knowledge needed to disen-

tangle HOIs’ importance for coexistence in nature. Progress

requires coupling empirical data and observations to our mod-

els. In this line, the longstanding debate between theoreti-

cal and field ecologists over the value of mathematical ab-

stractions reminds us that the law of parsimony—Occam’s

razor—favors simpler models when they perform equally well

[20]. Since the mere act of adding higher-order (or nonlin-

ear) terms boosts explanatory power [42], any claimed bio-

logical role for a mechanism must be weighed against that

baseline. But Occam retaliates: if adding complexity clearly

improves explanatory or predictive power, simplicity should

be abandoned. Therefore, we must assemble compelling evi-

dence that invoking HOIs as auxiliary mechanisms is indeed

the most effective way to explain species coexistence.

METHODS

Lyapunov function for different physiological rates

When we consider a well-mixed competitive system with pair-

wise and higher-order interactions combined, the evolution of species

abundances is written as:

dxi

dt
= (1− α)

[

xi

(

D(x)

F (x)2
fi
∑

j

2Hijfjxj − di

)]

+ α



xi

(

D(x)

F (x)3
fi
∑

j,k

Bijkfjxjfkxk − di

)



 .

(13)

To study this case, let’s introduce the notation:

T1 := T1i
=

D

F 2

∑

j

2fifjHijxj

T2 := T2i
=

D

F 3
fi
∑

j

∑

k

2fjfk(HijHjk +HijHik)xjxk

(14)

In equilibrium, we have

T
∗

1 (1− α) = di − αT
∗

2 (15)

where the star denotes that xi = x∗

i in the expression of T1 and

T2. Notice that the solutions of systems with only pairwise or only

higher-order interactions do not solve this equation since the equilib-

rium depends on the number of species involved. After finding this

equilibrium condition, we focus on obtaining the expression for the

derivative of the Lyapunov function. Assuming the feasibility of the

fixed point (all x∗

i > 0), we introduce the Lyapunov function V (x)
as:

dV

dt
= −

∑

i

x∗

i

xi

ẋ. (16)

Substituting Eq. (13), we get

dV

dt
= −

∑

i

x
∗
T1 +D

∗ − α
∑

i

x
∗

i T2 + α
∑

i

x
∗
T1 (17)

Our objective now is to see the sign of this function or whether we

can find a constant of motion for the system. The last term can be

expressed as

∑

i

x
∗
T1 =

∑

i

x
∗

i

D

F 2

∑

j

2fifjHijxj (18)

using that Hij = 1−Hji, we obtain

∑

i

x
∗
T1 =

∑

i

x
∗

i

D

F 2

∑

j

2fifjxj −
∑

i

x
∗

i

D

F 2

∑

j

2fifjHjixj

=
2D

F 2

(

F
∗
F −

∑

i

x
∗

i

∑

j

fifjHjixj

)

(19)

Rearranging factors in the last term, find the expression of T ∗

1 ,

Eq. (14), obtaining:
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∑

i

x
∗
T1 =

2DF ∗

F
−

F ∗2D

F 2D∗

∑

j

xjT
∗

1 (20)

When we revisit Eq. (17), after some calculations we now have

dV

dt
= (1− α)

∑

j

T
∗

1 xj

F ∗2D

F 2D∗
+D

∗−

α
∑

i

x
∗

i T2 + (α− 1)
2DF ∗

F

(21)

Taking the equilibrium condition (15), we arrive at

dV

dt
=

F ∗2D

F 2D∗

∑

j

xj(dj − αT
∗

2 ) +D
∗−

α
∑

i

x
∗

i T2 + (α− 1)
2DF ∗

F

=
1

F 2D∗
(F ∗

D − FD
∗)

2
+

α

(

2D
F ∗

F
−
∑

i

x
∗

i T2 −
F ∗2

F 2

D

D∗

∑

i

xiT
∗

2

)

(22)

Competitive communities model on interaction networks

To relax the well-mixed assumption in our model we extend it to

considered interactions taking place on a network with an increasing

fraction of higher-order interactions.

We place each individual in a node, which symbolizes a fixed spa-

tial location (Fig. 1). Individuals compete to place their offspring in

an empty node only if there is a link between them. These links can

now be of two different types based on the number of individuals

involved (i.e., the interaction order). Pairwise, connecting only two

individuals, and higher-order links with three individuals at time.

The initial configuration is set by randomly distributing the

species around N = 5·104 nodes. Then, we connect the nodes at ran-

dom with links or hyperlinks, according to the fraction of hyperlinks

in the network defined by the parameter α, creating an Erdős-Rényi

hypergraph. We construct these hypergraphs preserving the so-called

forgetful degree of nodes (k̃i) to compare results for networks with

different α. The forgetful degree is the sum of all the links that are

incident to a node i weighted by their order, so that each of our hy-

perlinks adds two to k̃i. For example, the empty node in Fig. 1 has

k̃i = 5. Higher α values lead to more hyperlinks per node, reducing

the density of pairwise connections.
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I. CALCULATING AREAS IN THE SIMPLEX

We characterize the behavior of the community by considering the area encircled by the system’s trajectory on the simplex.

Because of the noisy character of the dynamics in the stochastic simulations, the amplitude of the oscillations is not a robust

indicator. Instead, if the system fluctuates with small amplitude around some equilibrium abundances, the trajectory occupies a

small area (main Figure 1b), whereas larger oscillations would cover broader areas (Figure 1a). Here, we explain the details on

how we compute the area encircled by the trajectory.

For each simulation, the trajectory can be interpreted as points in a 3D space (gray dots in Figure 1, where the averaged

density triplet (x1, x2, x3) is the middle cross). To characterize the trajectory, we aim to measure the area covered by those

points.

For programming convenience, it is more practical to change to a two-dimensional space (y1, y2). The chosen space is the

one defined by the x+ y + z = 1 plane, as the density triplets always lie on it because
∑g

i xi(t) = 1 at all times. Let (û, v̂) be

two vectors in that plane that form an orthonormal basis. In particular:

û =

√

1

2





−1
1
0



 , v̂ =

√

2

3





−1/2
−1/2
1



 . (1)

The areas in each space are conserved because the transformation is isometric. In turn, the change of coordinates of our points

is given by:

y1 = (x1, x2, x3)

√

1

2





−1
1
0



 , y2 = (x1, x2, x3)

√

2

3





−1/2
−1/2
1



 . (2)

During the simulation, heavy fluctuations may occur, but the densities there do not represent the typical behavior of the ecosys-

tem. These extreme densities are the outermost points of the set of points that populate the two-dimensional space. To get a

representative area, we eliminate those boundary points, more precisely, we remove the 5% of outlier points. We then calcu-

late the area enclosed by the polygon defined by the new outermost points (green line in Figure 1) using MATLAB’s function

polyarea [1].

FIG. 1. Trajectory points projected in 2D. The red line encloses all the points. Green and blue lines enclose the 95% and 90% of the points,

respectively.
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II. LYAPUNOV FUNCTION FOR DIFFERENT PHYSIOLOGICAL RATES

When we consider a well-mixed competitive system with pairwise and higher-order interactions combined, the evolution of

species abundances is written as:

dxi

dt
= (1− α)



xi





D(x)

F (x)2
fi
∑

j

2Hijfjxj − di









+ α



xi

(

D(x)

F (x)3
fi
∑

j,k

Bijkfjxjfkxk − di

)



 .

(3)

To study this case, let’s introduce the notation:

T1 := T1i
=

D

F 2

∑

j

2fifjHijxj

T2 := T2i
=

D

F 3
fi
∑

j

∑

k

2fjfk(HijHjk +HijHik)xjxk

(4)

In equilibrium, we have

T ∗

1
(1− α) = di − αT ∗

2
(5)

where the star denotes that xi = x∗

i in the expression of T1 and T2. Notice that the solutions of systems with only pairwise or

only higher-order interactions do not solve this equation since the equilibrium depends on the number of species involved. After

finding this equilibrium condition, we focus on obtaining the expression for the derivative of the Lyapunov function. Assuming

the feasibility of the fixed point (all x∗

i > 0), we introduce the Lyapunov function V (x) as:

dV

dt
= −

∑

i

x∗

i

xi

ẋ. (6)

Substituting Eq. (3), we get

dV

dt
= −

∑

i

x∗T1 +D∗

− α
∑

i

x∗

i T2 + α
∑

i

x∗T1 (7)

Our objective now is to see the sign of this function or whether we can find a constant of motion for the system. The last term

can be expressed as

∑

i

x∗T1 =
∑

i

x∗

i

D

F 2

∑

j

2fifjHijxj (8)

using that Hij = 1−Hji, we obtain

∑

i

x∗T1 =
∑

i

x∗

i

D

F 2

∑

j

2fifjxj −

∑

i

x∗

i

D

F 2

∑

j

2fifjHjixj

=
2D

F 2



F ∗F −

∑

i

x∗

i

∑

j

fifjHjixj





(9)

Rearranging factors in the last term, find the expression of T ∗

1
, Eq. (4), obtaining:

∑

i

x∗T1 =
2DF ∗

F
−

F ∗2D

F 2D∗

∑

j

xjT
∗

1
(10)
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When we revisit Eq. (7), after some calculations we now have

dV

dt
= (1− α)

∑

j

T ∗

1
xj

F ∗2D

F 2D∗
+D∗

−

α
∑

i

x∗

i T2 + (α− 1)
2DF ∗

F

(11)

Taking the equilibrium condition (5), we arrive at

dV

dt
=

F ∗2D

F 2D∗

∑

j

xj(dj − αT ∗

2
) +D∗

−

α
∑

i

x∗

i T2 + (α− 1)
2DF ∗

F

=
1

F 2D∗
(F ∗D − FD∗)

2
+

α

(

2D
F ∗

F
−

∑

i

x∗

i T2 −
F ∗2

F 2

D

D∗

∑

i

xiT
∗

2

)

(12)
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III. SPECIAL CASE OF PROPORTIONAL RATES

To investigate what happens when the physiological rates are not equal, let’s suppose first that they are proportional in such a

way that

fi = cdi, ∀i (13)

This assumption is inspired by the fact that these physiological rates usually are related. So-called slow species survive and

reproduce little, and fast species reproduce a lot and die soon –a phenomenon named “the fast-slow continuum” [2]. In that case

we have F = cD and F ∗ = cD∗. Defining

E :=
1

F 2

∑

i

x∗

i fi
∑

j

∑

k

2fjfk(HijHjk +HijHik)xjxk+

1

FF ∗

∑

i

xifi
∑

j

∑

k

2fjfk(HijHjk +HijHik)x
∗

jx
∗

k, (14)

Eq. (12) can be rewritten as

dV

dt
=

c

F 2F ∗

(

F ∗F

c
−

FF ∗

c

)2

+ α

(

2
F ∗

c
−

E

c

)

=
α

c
(2F ∗

− E)

(15)

This expression shows that the proportionality of physiological rates c does not cause the derivative of the Lyapunov function to

become zero if it is the same for all the species. Still, a transition exits at αc = 0 for all different values of c.

[1] MathWorks, polyarea r2021a.

[2] M. Franco and J. Silvertown, Life history variation in plants: an exploration of the fast-slow continuum hypothesis, Philosophical Trans-

actions of the Royal Society of London. Series B: Biological Sciences 351, 1341 (1997), publisher: Royal Society.


