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EMERGENT BEHAVIOR
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(macro) 

patterns 

species 

individuals 

(micro)
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PART I


ECOLOGICAL SYSTEMS



ecology 

The science that deals with the general 
question of how living beings interact 
with each other and their environment

 /iˈkɒl.ə.dʒi/       noun
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Why are there so many species living together? 

EMERGENCE EMERGENCECOEXISTENCE
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Heterogeneous  interactions

Interactions represented as complex networks

exploitation mutualism competition
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 ≠ types of interactions

Kefi et al. PLOS Bio 2016

Space

Calleja-Solanas et al. PRE 2022
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Ch 3
Structured interactions &  
coexistence in competitive communities



Plankton paradox 

Competition
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Plankton paradox Intransitive Space

Competition

Allesina et al. Nature 2017 
Kishoni  et al. Nature comm 2016
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Information about  
spatial location 

Structured  
Interactions 

Spatial location 
Occupied by 1 individual

(macro) 

patterns 

species 

individuals 

(micro)
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Interaction range
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(b)  2D-lattice

(c)  RGG

(d) Erdős–Rényi model
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Q: How does coexistence  
depends on space? 

• Interaction range 
• Spatial structure 
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   between two random neighbors
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• Pairwise 

• Intransitive

   between two random neighbors

prob. species  defeats species i j
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Dynamics changes depending on structureResults
Area in phase space
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Dynamical behavior depends 
on structured interactions 

But why? Short range interactions 
 create clusters that reduce competition

short range 

interactions long range 

interactions

(b)  2D-lattice

(c)  RGG

(d) Erdős–Rényi model

rlarge
rsmall

short range

long range
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short-range interactions 
+ 

spatially structured network

stable coexistence 

Conclusions

17



18



(macro) 

patterns 
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(macro) 

patterns 

species 

individuals 

(micro)
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Ch 4
Structural predictors of species survival  
in complex communities

Olena Shmahalo/Quanta Magazine



Olena Shmahalo/Quanta Magazine

Environmental changes may alter 
species interactions

Biodiversity loss, cascades of extinctions

Are there predictors of species 
survival?

How does an ecosystem break?
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Predictors typically are... 
● general measures of whole network structure 
● with only one type of interaction

Ex: PageRank as predictor of importance for coextinctions in food webs
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Predictors typically are... 
● general measures of whole network structure 
● with only one type of interaction

Ex: PageRank as predictor of importance for coextinctions in food webs

Q: Do predictors change if we take more 
 interactions into account simultaneously? 
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We focus on: 
● properties of species ... 
● … coexisting in a network with different interaction types
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We focus on: 
● properties of species ... 
● … coexisting in a network with different interaction types

Replicator equation 

 = relative abundancexi

Λij = αAij
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Environmental change 
=  

change in   α

Λij = αAij
Erdős–Rényi

Scale-free 
(Holme-Kim, 

Barabási-Albert)

Empirical
Adjacency matrixInteraction strength
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Node properties: 

• Centrality 

• Meso-scale 

• Signed

Simulate replicator 
dynamics: 
Track survivors 

Decision tree 

Importance
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Results: Mutualism

Emp_WebOfLife
Emp_arid

Predictor = High Eigenv. Cent. increases survival Emp_WebOfLife

Emp_WebOfLife:
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Predictor = Low PR increases survival

Results: Competition

Emp_WebOfLife
Emp_arid

Emp_WebOfLife

Emp_WebOfLife:
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No universal predictors…
• Network 

Results: Mutualism  &  Competition
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No universal predictors…
• Network 

• Interaction strength 

Results: Mutualism  &  Competition
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No universal predictors… 

But they usually depend on interaction strength and sign

Results: Mutualism  &  Competition
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Structural predictors are… 

• Different from competition or mutualism alone  

• Different for every ecosystem

Competition & Mutualism

Ecosystems are composed of several types of interactions…
Revisit results obtained for single interactions!

Conclusions
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PART II


INFORMATION ECOSYSTEMS




Information ecosystems 

An ecological approach to computational 
social sciences

 /ˌɪn.fəˈmeɪ.ʃən ˈiː.kəʊˌsɪs.təms/       
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Spot the differences! 
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Natural Ecosystems


● Species 
● Abundances 
● Resources 

  ⋮

Information Ecosystems


● Memes/hashtags, users 
● Popularity, visibility 
● Users’ attention 

  ⋮

(macro) 

patterns 

species 

individuals 

(micro)
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Natural Ecosystems


● Species 
● Abundances 
● Resources 

  ⋮

Exploit tools and theories from Theoretical Ecology 
 to understand Human Behavior!!

Information Ecosystems


● Memes/hashtags, users 
● Popularity, visibility 
● Users’ attention 

  ⋮
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Rohr et al.  Science 345 (2014)

Bascompte et al. PNAS 100 (2003)
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Ch 5
Quantifying the drivers behind  
collective attention



• Cognitive bottleneck 

• Attention is the new currency 

• Competition for attention 

Q2: What are the drivers behind collective attention? 
Q1: How can we quantitatively characterise competition? Collective attention during events 

34
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Q1: How can we quantitatively characterize competition? 

Method based on: 
• Generalized Lotka-Volterra equations 
• Niche theory 
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competition mutualism 

dnU
i

dt
= nU

i ρU
i − ∑

j

βUU
ij nU

j +
∑k γUH

ik nH
k

1 + h∑l θilnH
l

dnH
k

dt
= nH

k ρH
k − ∑

l

βHH
kl nH

l +
∑i γHU

ki nU
i

1 + h∑j θkjnU
j

θ

Q1: How can we quantitatively characterize competition? 

Method based on: 
• Generalized Lotka-Volterra equations 
• Niche theory 
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Niche theory

Quantifying competition & mutualism
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Some topics and their #
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Quantifying competition & mutualism
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Quantifying competition & mutualism

38



⃗ui ⋅ ⃗uj

⃗hk ⋅ ⃗hl

⃗ui ⋅ ⃗hk

βUU βHH

γUHθ

Quantifying competition & mutualism
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What weights more?


 Users effective competition ↓ during peaks 


 Hashtags effective competition ↑ during peaks 

βeff = (β − βcalm) − (γ − γcalm)

β e
ff

Results

More competition

Less competition
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 Users effective competition ↓ during peaks 
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Results
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During peaks:


one or two topics generate 
almost the 90% of the 
tweets

Topic evolution:

40



Q2: What are the drivers behind collective attention? 

Assumption: users maximize their visibility

Suweis et al. Nature 500 (2013) 

Cai et al. Nature Communications 11, (2020) 41



Rewiring θ

Q2: What are the drivers behind collective attention? 

Assumption: users maximize their visibility

42



Results Comparison empirical interactions with optimization model

43



It’s a match!  

Results Comparison empirical interactions with optimization model
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An analogy between natural and information ecosystems can quantify the 
competition for attention experienced by agents during events 

• Users effectively reduce net competition 

• Hashtags experience stronger competition 

• The driver is visibility optimization

Conclusions
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Ch 6
Finding macroecological patterns in  
information ecosystems



Universal statistical laws across ecosystems 

Important for:

• Abundance 
• Distribution 
• Diversity

• Finding mechanisms 
• Modeling  
• Health and prediction

45



Universal statistical laws across ecosystems 

Important for:

• Abundance 
• Distribution 
• Diversity

• Finding mechanisms 
• Modeling  
• Health and prediction
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S. Azaele, et al. Rev. Mod. Phys. 88, 035003 (2016) 



Universal statistical laws across ecosystems 

Important for:

• Abundance 
• Distribution 
• Diversity

• Finding mechanisms 
• Modeling  
• Health and prediction

• Species = Hashtags 
• Abundance = Popularity 
• Sampling

Q: How do these laws apply to 
Information Ecosystems?
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10 “Events” datasets + 1 “Random” sample of Twitter Activity

Dataset Type Posts Hashtags Days

Mexican Elections E 191788 158 1
Scottish Referendum E 429901 313 23
Catalan Referendum E 222783 375 69
St. Patrick’s Day E 2882010 1591 3
Brexit E 182629 1689 69
UK random sample R 1649482 1833 9
Ferguson Unrest U 8782071 2811 17
Panama Papers U 5044378 3696 23
Euro 2012 E 8992157 4361 34
Nepal Earthquake U 12004187 5032 23
Hurricane Sandy U 5658525 5353 6
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HETEROGENEOUS!10 “Events” datasets + 1 “Random” sample of Twitter Activity
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Patterns
• Taylor’s Law  
• Mean Abundance Distribution MAD 
• Abundance Fluctuations Distribution AFD
• Relative Species Abundance RSA 
• Species-Area Curve SAC 
• Short-Term Abundance Change STAC

48

J. Grilli. Nature Communications 11, 4743 (2020)

S. Azaele, et al. Rev. Mod. Phys. 88, 035003 (2016) 

       Ji, et al. Nature Microbiology 5,  768–775 (2020) 



Taylor’s Law
Connects mean abundance of a hashtag 

 with its variance

σ2
h ∼ x2

i
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Species-Area Curve - SAC

⟨s(N )⟩ = stot 1 − ∫ d η
exp −(η − μ)2

2σ2

2πσ2 ( β
β + eηN )

β

J. Grilli. Nature Communications 11, 4743 (2020)

S. Azaele, et al. Rev. Mod. Phys. 88, 035003 (2016) 

How diversity scales with sampling size
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⟨s(N )⟩ = stot 1 − ∫ d η
exp −(η − μ)2

2σ2

2πσ2 ( β
β + eηN )

β

J. Grilli. Nature Communications 11, 4743 (2020)

S. Azaele, et al. Rev. Mod. Phys. 88, 035003 (2016) 

Species-Area Curve - SAC
How diversity scales with sampling size
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Short-Term Abundance Change - STAC

p(λ) =
1
2γ

exp ( − |λ − u |
γ )

λhb = log (
xhb+1

xhb )

Distribution of ratio between  

abundances at consecutive times

       Ji, et al. Nature Microbiology 5,  768–775 (2020) 

Laplace distribution
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• Same patterns as in ecology! 

• Patterns are universal

Conclusions
Q: How do these laws apply to 

Information Ecosystems?
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General conclusions

★ Reinforce the crucial role of interactions 
• Taking structured interactions / multiple interaction types into account 

change ecological behavior

★ Take advantage of developments of one domain to understand another 
• Mapping ecological interactions on social networks to understand human behavior

53
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Outlook

★ How higher-order interactions change the competition game

★ What are the underlying mechanisms of information ecosystems’ patterns

★ How patterns change during events

54
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 QUESTIONS?



Spatial structure

Erdős Rényi Random Geometric Graph 
(RGG)

Lattice

11



Small fluctuations are noise



Stability after a perturbation



Persistence decreases with high interaction 
strength in absolute value  



Results: Mutualism





Results: Competition



The importance is not modified 
when we add Gaussian noise  
to  α



Results: Mutualism  &  Competition









Universal statistical laws across ecosystems 

Important for:

• Abundance 
• Distribution 
• Diversity

• Finding mechanisms 
• Modeling  
• Health and prediction

• Species = Hashtags 
• Abundance = Popularity 
• Sampling





Mean Abundance Distribution - MAD

p(x ) =
1

2πσ2x
exp (−

(logx − μ)2

2σ2 )

Lognormal distribution
J. Grilli. Nature Communications 11, 4743 (2020)



Abundance Fluctuations Distribution - AFD

ρh(x) =
1

Γ(βh) ( βh

xh )
βh

xβh−1exp (−βh
x
xh )

Gamma distribution
J. Grilli. Nature Communications 11, 4743 (2020)



Relative Species Abundance -  RSA



MODEL FOR HASHTAG SAMPLING

P(n1, . . . , nH, Nb) =
Nb!

∏nh! ∏ f nh
h

Nb

Nb

# #
## # #

# #

#

SUP: given a set of # frequencies, 
 multinomial random sampling

?



Taylor’s Law  

Mean Abundance Distribution MAD 

Abundance Fluctuations Distribution AFD 

Relative Species Abundances. RSA 

Species-Area Curve SAC 

Daily Abundance Change STAC

MODEL FOR HASHTAG SAMPLING






